A Mysterious Object Will Sweep Past Earth In 2017 – Scientists Have No Idea What It Is

Mysterious-Alien-probe-to-pass-Earth-in-2017

A mysterious object will sweep past Earth in 2017 and Scientists have no idea what it isIs this an Alien probe? The mysterious object was spotted for the first time in 1991 by Astronomer James Scotti from the University of Arizona and is referred to as 1991 VG.

The mysterious object was spotted for the first time in 1991 by Astronomer James Scotti from the University of Arizona and is referred to as 1991 VG.  Continue reading

Meet Planet Nine, The Newly Discovered Ninth Planet In Our Solar System

There’s some debate over just how many planets our solar system has because Pluto never gets a break. But the argument is about to get a lot weirder with the announcement of a potential new planet circling the sun. Meet Planet Nine, the planet we didn’t know existed.  Continue reading

Joe Rogan on Invisible Aliens, String Theory & Collective DMT Dreams

Rogan BTS

Abby Martin discusses everything from aliens communicating with earth, collective DMT experiences, string theory and marijuana legalization with Joe Rogan, host of the Joe Rogan Experience. It’s good and worth the watch.

 

NASA Mars Orbiter Images May Show 1971 Soviet Lander

Could This Be the Mars Soviet 3 Lander?

 

Hardware from a spacecraft that the Soviet Union landed on Mars in 1971 might appear in images from NASA’s Mars Reconnaissance Orbiter.

While following news about Mars and NASA’s Curiosity rover, Russian citizen enthusiasts found four features in a five-year-old image from Mars Reconnaissance Orbiter that resemble four pieces of hardware from the Soviet Mars 3 mission: the parachute, heat shield, terminal retrorocket and lander. A follow-up image by the orbiter from last month shows the same features.

The Mars 3 lander transmitted for several seconds after landing on Dec. 2, 1971, the first spacecraft to survive a Mars landing long enough to transmit anything.

Images of the possible Mars 3 features, taken by the High Resolution Imaging Science Experiment (HiRISE) camera on Mars Reconnaissance Orbiter, are available at http://uahirise.org/ESP_031036_1345 andhttp://www.jpl.nasa.gov/spaceimages/details.php?id=PIA16920 .

“Together, this set of features and their layout on the ground provide a remarkable match to what is expected from the Mars 3 landing, but alternative explanations for the features cannot be ruled out,” said HiRISE Principal Investigator Alfred McEwen of the University of Arizona, Tucson. “Further analysis of the data and future images to better understand the three-dimensional shapes may help to confirm this interpretation.”

In 1971, the former Soviet Union launched the Mars 2 and Mars 3 missions to Mars. Each consisted of an orbiter plus a lander. Both orbiter missions succeeded, although the surface of Mars was obscured by a planet-encircling dust storm. The Mars 2 lander crashed. Mars 3 became the first successful soft landing on the Red Planet, but stopped transmitting after just 14.5 seconds for unknown reasons.

The predicted landing site was at latitude 45 degrees south, longitude 202 degrees east, in Ptolemaeus Crater. HiRISE acquired a large image at this location in November 2007. This image contains 1.8 billion pixels of data, so about 2,500 typical computer screens would be needed to view the entire image at full resolution. Promising candidates for the hardware from Mars 3 were found on Dec. 31, 2012.

Vitali Egorov from St. Petersburg, Russia, heads the largest Russian Internet community about Curiosity, athttp://vk.com/curiosity_live . His subscribers did the preliminary search for Mars 3 via crowdsourcing. Egorov modeled what Mars 3 hardware pieces should look like in a HiRISE image, and the group carefully searched the many small features in this large image, finding what appear to be viable candidates in the southern part of the scene. Each candidate has a size and shape consistent with the expected hardware, and they are arranged on the surface as expected from the entry, descent and landing sequence.

“I wanted to attract people’s attention to the fact that Mars exploration today is available to practically anyone,” Egorov said. “At the same time we were able to connect with the history of our country, which we were reminded of after many years through the images from the Mars Reconnaissance Orbiter.”

An advisor to the group, Alexander Basilevsky, of Vernadsky Institute of Geochemistry and Analytical Chemistry, Moscow, contacted McEwen suggesting a follow-up image. HiRISE acquired the follow-up on March 10, 2013. This image was targeted to cover some of the hardware candidates in color and to get a second look with different illumination angles. Meanwhile, Basilevsky and Erogov contacted Russian engineers and scientists who worked on Mars 3 for more information.

The candidate parachute is the most distinctive feature in the images. It is an especially bright spot for this region, about 8.2 yards (7.5 meters) in diameter. The parachute would have a diameter of 12 yards (11 meters) if fully spread out over the surface, so this is consistent. In the second HiRISE image, the parachute appears to have brightened over much of its surface, probably due to its better illumination over the sloping surface, but it is also possible that the parachute brightened in the intervening years because dust was removed.

The descent module, or retrorocket, was attached to the lander container by a chain, and the candidate feature has the right size and even shows a linear extension that could be a chain. Near the candidate descent module is a feature with the right size and shape to be the actual lander, with four open petals. The image of the candidate heat shield matches a shield-shaped object with the right size if partly buried.

Philip J. Stooke from the University of West Ontario, Canada, suggested the direction of search and offered helpful advice. Arnold Selivanov (one of the creators of Mars 3) and Vladimir Molodtsov (an engineer at NPO Lavochkin, Moscow) helped with access to data archives.

HiRISE is operated by the University of Arizona, Tucson. The instrument was built by Ball Aerospace & Technologies Corp., Boulder, Colo. The Mars Reconnaissance Orbiter Project and Curiosity are managed by NASA’s Jet Propulsion Laboratory, Pasadena, Calif., for NASA’s Science Mission Directorate, Washington. JPL is a division of the California Institute of Technology in Pasadena.

For more information about the Mars Reconnaissance Orbiter, which has been studying Mars from orbit since 2006, visit http://www.nasa.gov/mro .

 

 

 

http://www.jpl.nasa.gov/news/news.php?release=2013-132&cid=release_2013-132

 

 

Curiosity Rover Finds Organic Signal on Mars, But Not Definitive: NASA

(Space.com) NASA’s Mars rover Curiosity has discovered complex chemistry on the Red Planet, as well as hints of long-sought organic compounds that could aid primitive life, scientists announced today (Dec. 3).

The Curiosity rover found evidence of chlorine, sulfur and water in Mars dirt studied by its onboard laboratory, as well as organic compounds (chemicals containing carbon) inside its Sample Analysis at Mars instrument. However, the science team can’t yet be sure whether these compounds truly come from Mars, or arise from contamination transported to the Red Planet onboard Curiosity.

“SAM has no definitive detection to report of organic compounds,” Paul Mahaffy, SAM principal investigator at NASA’s Goddard Space Flight Center in Greenbelt, Md., said during a press conference at the annual meeting of the American Geophysical Union in San Francisco.

“Even though [Mahaffy’s] instrument detected organic compounds, first of all we have to determine whether they’re indigenous to Mars,” said John Grotzinger, Curiosity’s project scientist. [Organic Compounds On Mars - Did Curiosity Bring it? | Video]

The announcement came after recent rumors — which NASA attempted to dampen last week — that Curiosity had made a huge discovery on Mars.

Curiosity's 'Rocknest' Workplace
NASA’s Curiosity Mars rover documented itself in the context of its work site, an area called “Rocknest Wind Drift,” on the 84th Martian day, or sol, of its mission (Oct. 31, 2012). Image released Dec. 3, 2012.
CREDIT: NASA/JPL-Caltech/MSSS

The observation by Curiosity involved perchlorate, a reactive compound of oxygen and chlorine that had previously been found in the Martian arctic by NASA’s Phoenix lander.

Curiosity’s SAM instrument uses a tiny oven to cook Mars dirt samples, then study the gases they give off to determine their chemical makeup. Martian soil samples are placed in the device by a scoop on Curiosity’s robotic arm.

When Curiosity cooked the perchlorate in its SAM oven, it created chlorinated methane compounds, one-carbon organic material.

“The chlorine is of Martian orgin, but it’s possible the carbon may be of Earth origin, carried by Curiosity and detected by SAM’s high sensitivity design,” NASA officials wrote in a statement.

 

 

The new findings by Curiosity came during the rover’s study of a patch of windblown Martian dust and sand called “Rocknest.” It is a flat stretch of Mars terrain that is still miles away from Curiosity’s first destination, rock outcrop called Glenelg at the base of the 3-mile (5 kilometers) Mount Sharp that rises from the center of the rover’s landing site — the vast Gale Crater.

While scientists puzzle out the validity of Curiosity’s SAM signals, the rover’s other instruments have made curious discoveries, as well, mission scientists said.

Curiosity’s arm-mounted tools have confirmed that the Martian soil at the Rocknest site is similar in chemical composition and appearance to the dirt seen by NASA’s three other rovers: the small Pathfinder, and golf cart-size Spirt and Opportunity rovers.

Windblown Sand from the 'Rocknest' Drift

The Mars Hand Lens Imager (MAHLI) on NASA’s Mars rover Curiosity acquired close-up views of sands in the “Rocknest” wind drift to document the nature of the material that the rover scooped, sieved and delivered to the Chemistry and Mineralogy Experiment (CheMin) and the Sample Analysis at Mars (SAM) in October and November 2012. Image released Dec. 3, 2012.
CREDIT: NASA/JPL-Caltech/MSSS

Photos from the rover’s Mars hand Lens Imager, or MAHLI, revealed that the sand drifts at Rocknest have a crusty surface that hides even darker, finer sand below.

“Active drifts on Mars look darker on the surface,” MAHLI principal investigator Ken Edgett of Malin Space Science Systems in San Diego said in a statement.”This is an older drift that has had time to be inactive, letting the crust form and dust accumulate on it.”

Meanwhile, Curiosity’s Chemical and Mineralogy detector, called CheMin, found that the terrain around Rocknest is a mix of volcanic and glassy, non-crystalline materials. While the rover found more evidence of water than expected, some water molecules bound to bits of sand were anticipated, scientists said.

The car-size Mars rover Curiosity landed on the Red Planet in early August. The $2.5 billion robot is the largest rover ever sent to another planet and is expected to spend at least two years exploring Gale Crater to determine if the region could have ever supported microbial life.